Antigen Presentation in Acute Graft-Versus-Host Disease

Muhammad Haroon Shaikh

Department of Internal Medicine II, University Hospital, Würzburg, Germany

ABSTRACT

Hematopoietic cell transplantation (HCT) is the only reliable curative therapy for various hematological malignancies and genetic hematological disorders. Nevertheless, acute graft-versus-host disease (aGvHD) remains the leading cause of morbidity and mortality (20%) of transplant-related complications following allogeneic HCT (allo-HCT). In the initiation phase of acute graft-v*ersus*-host disease (aGvHD), CD4⁺ T cells are activated by hematopoietic antigen presenting cells in secondary lymphoid organs whereas in effector phase by non-hematopoietic cells in the small intestine. We hypothesized that alloreactive CD4⁺ T cells primarily home to the secondary lymphoid organs subsequent to allogeneic hematopoietic cell transplantation in the initiation phase of aGvHD and are activated by the non-hematopoietic lymph node stromal cells via MHC class II. To test this hypothesis, we employed CD4⁺ T cell-dependent major mismatch aGvHD mouse model to study this correlation.

Upon analyzing the early events following allo-HCT with bioluminescence imaging, flow cytometry and whole-mount light sheet fluorescence microscopy, we found that allogeneic T cells exclusively home to the spleen, lymph nodes and the Peyer's patches and not to the intestinal *lamina propria* in the initiation phase of aGvHD.

Utilizing conditional knock-out micewe further showed that the stroma of the lymph nodes is not involved in the antigen presentation to allogenic $CD4^+$ T cells and rather provide protective niches to allogenic regulatory T cells (Tregs) mitigating aGvHD. Whereas endothelial cells activate allogenic $CD4^+$ T cells thus inducing aGvHD.

Conclusively, our works elucidates the novel cellular interaction which can be considered attractive therapeutic targets to regulate T cellalloreactivity in aGvHD after allo-HCT.